323 research outputs found

    Generalized Korn's inequality and conformal Killing vectors

    Full text link
    Korn's inequality plays an important role in linear elasticity theory. This inequality bounds the norm of the derivatives of the displacement vector by the norm of the linearized strain tensor. The kernel of the linearized strain tensor are the infinitesimal rigid-body translations and rotations (Killing vectors). We generalize this inequality by replacing the linearized strain tensor by its trace free part. That is, we obtain a stronger inequality in which the kernel of the relevant operator are the conformal Killing vectors. The new inequality has applications in General Relativity.Comment: 8 page

    Celestial mechanics of elastic bodies

    Get PDF
    We construct time independent configurations of two gravitating elastic bodies. These configurations either correspond to the two bodies moving in a circular orbit around their center of mass or strictly static configurations.Comment: 16 pages, 2 figures, several typos removed, erratum appeared in MathZ.263:233,200

    Nonlinear weakly curved rod by Γ-Convergence

    Get PDF
    We present a nonlinear model of weakly curved rod, namely the type of curved rod where the curvature is of the order of the diameter of the cross-section. We use an approach analogous to the one for rods and curved rods and start from the strain energy functional of three dimensional nonlinear elasticity. We do not impose any constitutional behavior of the material and work in a general framework. To derive the model, by means of Γ-convergence, we need to set the order of strain energy (i.e., its relation to the thickness of the body h). We analyze the situation when the strain energy (divided by the order of volume) is of the order h 4. This is the same approach as the one used in Föppl-von Kármán model for plates and the analogous model for rods. The obtained model is analogous to Marguerre-von Kármán for shallow shells and its linearization is the linear shallow arch model which can be found in the literature

    Quasiconvexity at the boundary and the nucleation of austenite

    Get PDF
    Motivated by experimental observations of H. Seiner et al., we study the nucleation of austenite in a single crystal of a CuAlNi shape-memory alloy stabilized as a single variant of martensite. In the experiments the nucleation process was induced by localized heating and it was observed that, regardless of where the localized heating was applied, the nucleation points were always located at one of the corners of the sample - a rectangular parallelepiped in the austenite. Using a simplified nonlinear elasticity model, we propose an explanation for the location of the nucleation points by showing that the martensite is a local minimizer of the energy with respect to localized variations in the interior, on faces and edges of the sample, but not at some corners, where a localized microstructure, involving austenite and a simple laminate of martensite, can lower the energy. The result for the interior, faces and edges is established by showing that the free-energy function satisfies a set of quasiconvexity conditions at the stabilized variant in the interior, faces and edges, respectively, provided the specimen is suitably cut

    Spaces of finite element differential forms

    Full text link
    We discuss the construction of finite element spaces of differential forms which satisfy the crucial assumptions of the finite element exterior calculus, namely that they can be assembled into subcomplexes of the de Rham complex which admit commuting projections. We present two families of spaces in the case of simplicial meshes, and two other families in the case of cubical meshes. We make use of the exterior calculus and the Koszul complex to define and understand the spaces. These tools allow us to treat a wide variety of situations, which are often treated separately, in a unified fashion.Comment: To appear in: Analysis and Numerics of Partial Differential Equations, U. Gianazza, F. Brezzi, P. Colli Franzone, and G. Gilardi, eds., Springer 2013. v2: a few minor typos corrected. v3: a few more typo correction

    Existence theorems in the geometrically non-linear 6-parametric theory of elastic plates

    Full text link
    In this paper we show the existence of global minimizers for the geometrically exact, non-linear equations of elastic plates, in the framework of the general 6-parametric shell theory. A characteristic feature of this model for shells is the appearance of two independent kinematic fields: the translation vector field and the rotation tensor field (representing in total 6 independent scalar kinematic variables). For isotropic plates, we prove the existence theorem by applying the direct methods of the calculus of variations. Then, we generalize our existence result to the case of anisotropic plates. We also present a detailed comparison with a previously established Cosserat plate model.Comment: 19 pages, 1 figur

    Analysis and simulations for a phase‐field fracture model at finite strains based on modified invariants

    Get PDF
    Phase‐field models have already been proven to predict complex fracture patterns for brittle fracture at small strains. In this paper we discuss a model for phase‐field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. Here we present a phase‐field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split of the modified invariants of the right Cauchy‐Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions and we show that the time‐discrete solutions converge in a weak sense to a solution of the time‐continuous formulation of the model. Numerical examples in two and three space dimensions illustrate the range of validity of the analytical results

    Generalization of the Zlámal condition for simplicial finite elements in ℝ d

    Get PDF
    The famous Zlámal's minimum angle condition has been widely used for construction of a regular family of triangulations (containing nondegenerating triangles) as well as in convergence proofs for the finite element method in 2d. In this paper we present and discuss its generalization to simplicial partitions in any space dimension
    corecore